

AN IMPROVED USER ENVIRONMENT FOR 71X*

Peehong Chen Michael A. Harrison
Jeffrey W. McCarrell John Coker Steve Procter

Computer Science Division
University of California

Berkeley, CA 94720, USA

Abstract
This paper descn'be the enhancements we have made at Berkeley i'o the *X environment.
The goal of the enhancements is to shorten the edit-compile-debug cycle in preparing TiX
documents. An important step in cutting down debugging time is the development of a
DVI previewer on a workstation with a high resolution bit-mapped display. Yet another
approach we took is the integration of TBC with a powerful display-oriented editor whereby
the editing, compiling, and certain pre- or postprocessing of a document may be automated.
We present some of the important results of our work in this paper with a general critique
on 72X that underscores our motivations.

1. Introduction

This paper is a report on the improvements we have made at Berkeley to the TEX docu-
ment preparation environment. During the past few years, TEX [8] has evolved at Berkeley
as an alternative to the standard UNIX text processing system troff [10] and its prepro-
cessors. We enjoy doing our writings in ThEX because it has a number of advantages over
other systems, some of which we see are its extensibility (macros), mathematics, and the
high quality output. Unfortunately, at the same time we have also discovered some dis-
advantages of and inconveniences in using TEX. The fact that TEX is batch-oriented often
makes it very expensive to reprocess a document with only few changes. Another criticism
we consider valid is its lack of graphics support, although a 'hook" is available (\spe-
cial) and many proposals have been made over the years in the public forum such as the
tex-hax mailing list.

In 1984, a team was formed at Berkeley to conduct research in document preparation
systems, with the improvement of TFX as our primary goal. The work we have done in
the project comprises two phases. In phase one we took the obvious approach to make u

* This work has been sponsored by the U.S. National Science Foundation under Grant
MCS-8311787 and by the U.S. Defense Advanced Research Projects Agency (DoD), ARPA
Order No. 4871, monitored by Naval Electronic Systems Command, under Contract No.
N00039-84-C-0089. Additional support was provided by the State of California MICRO odes
program under grant number 532422-19900.

1 + +or

4 f li

enhancements by integrating ThX and its accessory programs with an interactive editor.
Furthermore, on our workstations we developed a DVI previewer and other TEX-related
tools to shorten the edit-compile-debug cycle. In the second phase, which is still under
development, we are taking a more ambitious approach that attempts to design and build a
brand new system based on TFX. The idea is to stick with TF.X's source language including
its macro facility and formatting algorithms but, in addition, making it incremental and
more user friendly. Moreover, editing tables, graphics, and raster images will be an integral
part of the system. We call this new environment Visually-ORiented TEX, or VOTFX.

The two approaches are actually interrelated. The first phase started earlier with porting
Po 7)1X to the SUN workstation and developing a DVI previewer under its window system,

followed by integrating all TFX-related software in a display-oriented editor. By now
it has produced a number of programs which are useful in and of themselves. They
have also become important prototypes and special subsystems for the ultimate VORTEX
environment.

This paper is concerned with the results produced by phase one of our project, as the
objectives and design of the VORTFX system itself is discussed elsewhere 14]. We frst
give a general critique on TFX. from the user's point of view in the next section, pointing
out its strengths and weaknesses as compared with other systems. This also serves us a
background for later sections which discuss some of the important enhancements we have
done.

Section 3 describes the functionalities and technical aspects of dvitool, the DVI pre-
viewer we have been developing on the SUN workstation. Working with a window-based
system, one can have a text editor operating on a source file, also have available a console
or shell window in which to run additional jobs, and have a third window displaying the
formatted output all at the same time. Our program for previewing DVI files is called dvi-
tool which supports keystroke commands, pop-up menus, scroll bars, and other standard
user interface in a window paradigm.

Section 4 discusses the TF)X integration with GNU Emacs [13]. For the time being,
most of us use Emacs as our editor-of-choice in preparing source files. Emacs allows one
to customize it by writing programs in a Lisp dialect. This turns out to be an extremely
powerful language, and we have constructed very large programs which aid in the use of
TEX. In addition to doing obvious things such as matching braces automatically, the user
can receive a great deal of assistance in working with bibliographies. It is possible to avoid
the use of multiple passes with IATEX/BIBTEX 19,11] and a great many other important
facilities can be made available through the use of our system. Discussions in this section

are concentrated on high-level abstractions of the design and its basic functionalities.
Finally some concluding remarks are given in Section 5 on our experience with building

this improved TEX environment. Notes on what we expect to do in the future, especially
with VORT1X, will also be mentioned.

2. A Critique

We have chosen to base the VO1TX system on TEX for a number of reasons which center
around 71,'s unique advantages. One of these is the concept of a device independent file
which gives the same results on different output devices, and the only limitation is the

2

resolution of the device. We also are committed to getting the highest possible quality
from our systems. TEX has outstanding algorithms for dealing with the basic problems of
computerized typesetting. In particular, the line breaking algorithm is excellent and the
hyphenation algorithm gives impressive results for relatively small table sizes.

TEX's greatest strength is its handling of mathematics. It is in processing mathematics
that the advantages of a source-based system such as TEX become very noticeable. In a
seminar given at Berkeley, students were asked to typeset a page of complicated mathe-
matics from a textbook. This was not terribly difficult to do using TEX. On the other hand,
with Xerox Dandelions available some students attempted to set the same page using the
processing facilities available as part of the STAR system [I]. It took much longer, and the
results were very disappointing in terms of appearance. This has lead us to believe that
typesetting mathematics without a source language is in general a painful task. Even with
the notion of plagiarizing, (i.e. by copying template formulas from what's available in sys-
tem's database), which is supported by some WYSIWYG (what-you-see-is-what-you-get)
syst like LARA (6], -he potential twmpering by the user will still put its final quality in
question. The output produced by TE.X on mathematics exceeds the levels of all but the
best hand compositors, and it can be truly said to be an "expert system7 in the production
of mathematics.

Unfortunately, TEX has weaknesses as well. There is no graphic facility whatsoever.
The system is oriented to batch operating systems. TEX has facilities for setting tables,
but these are primitive, and the construction of tables in TEX is an enormously difficult
and time-consuming chore. The situation is somewhat ameliorated with I4TEX [9] which
makes producing tables almost as easy as using tbl and trot. '.-

TEX achieves its flexibility by being a macro-based system. That is, the user writes
macros to accomplish what one wishes to do. Such examples of course are the plain
package and the IATFX macro package. There is a very poor human interface in the macro
system, and it requires a high degree of wizardry to use it. "I

While the source based systems have been impressive in the quality of their output for
difficult typesetting jobs like mathematics, the situation is reversed with the WYSIWYG
editors. Here excellent human interfaces have been developed. Users find it easy to learn
the systems for simple word processing or even for the construction of graphics and the
preparation of tables. The software for the Macintosh [7] is especially noteworthy in this
regard. On the other hand, these systems cannot do mathematics well and they do not
generally produce high quality results comparable to those obtainable from TFX.

3. TEX without Paper: Dvltool
Dvitool, a TE output previewer running on the SUN workstation, is an integral part of
the Berkeley TEX environment. Our primary goal for dvitool was to provide a means
to view the DVI representation of a 71EX file without printing it. In our large commu-
nity, printing takes a long time and is particularly frustrating when debugging a macro.
The section describes dvitool's basic functionalities, its user interface, and the future
directions.

3.1 Functionalitles
One of the first things dvitool does when executed is look for a user specific customiza-

3

' , , a .' ,' .- , '.J,' .,. . p.' p.. ,, -. ..- . -. . . .,,..,;,:. . .

tion file. The customization file describes initialization parameters which are mostly win-
dow system specific, for example, the placement and size of the window dvitool runs in.
After dvitool has started up, the image it presents of the DVI page is 1.45 times the
size of an 8.5 by 11 inch sheet of paper. This scale factor means that when dvitool is
made as big as the screen allows, the full width of the page and about 60% of its height
will be visible. The scale factor is largely historical, but it is also practical. It turns out
that at our screen resolution (80 dots per inch) that 1.45 times normal size is close to the
lower bound of usability. Any smaller and the fonts would be illegible. Even at 1.45 times
normal, dvitool's fonts cannot be called satisfactory.

Once the page is painted, the user can scroll an arbitrary amount either vertically
or horizontally. The default action is to scroll 1/3 of the window size. There are also
commands to position on any edge of the page, so one keystroke positions the bottom of
the page at the bottom of the window. The complete DVI page is read in at one time, so
that new views of the same page are instantaneous.

The =aser cm m e back md forth ain. s imelL Sime & new DVI page must
be read and painted, there is a short delay, typically 4 seconds in our environment. Pages
are cached, however, so that once a page has been viewed, viewing it again is nearly
instantaneous. The memory penalty for page caching is about 6K bytes per page, which

*. is not too prohibitive on our workstations with 4 megabytes of memory. The user can
- limit the number of cached pages and dvitool internally sets the limit whenever it cannot

obtain enough memory to cache another page.
'Wildcard" searches have been implemented on any of TEX's ten \count variables.

These are not full regular expressions; they just match any field so the user can go to the
first page in chapter 4, for example. Commands also exist to view the first and last pages
of the file. The movement commands are reminiscent of a text editor.

We've also implemented a global magnification scheme in dvitool. TEX's \,agnifi-
cation macro magnifies the size of individual letters on the page, but keeps \hsize and
\vsize in true dimensions so the pages always come out 8.5 by 11 inches. Dvitool's
magnification, on the other hand, is global. It simply magnifies the entire page. There
are 6 steps available, corresponding to TEX's 6 magsteps. This feature is particularly nice
for aging eyes. We implemented discrete steps of magnification rather than a continuous
spectrum because new magnifications require new fonts.

Dvitool can also report information about the DVI image, though this ability isn't
quite as useful as it sounds. DVI files were designed to be a compact representation of

ia typeset page. There isn't a lot of extraneous information in them, so there isn't much
that dvitool can report. About the most useful feature is that the user can select a
character with the mouse and ask what font that character is set in. Even this is of limited
usefulness, however, because the user has to correlate the font name in the TEX document
which may have gone through arbitrary macro expansion to the system's name of the font
that dvitool knows about. For example, TEX users in our environment have to know that
TFX uses amitt for italic fonts. IlTEX users have to correlate amitt with emphasized text
as well.

A companion program for dvitool we've developed is called texdvi. As the name
implies, in one step T)EX is executed and then the output is previewed using dvitool.

I4

Texdvi is smart enough to start up a new dvitool or to signal a running dvitool to
preview the newly formatted output. However, dvitool will not be invoked if the DVI
file was not changed. In addition, if there were errors during the TEX job, texdvi asks
the user if he still wants to preview the potentially flawed DVI file. The new DVI image
displays the text at exactly the point that was displayed earlier. This is very useful for
debugging because of automatic repositioning. There are similar mechanisms for working
with lTEX and SIIIJTX (i.e. latexdvi and slitexdvi). In fact the program is set up
in a way that with the formatter replaced by any ThX dialect, say FooTEX, the program
f ootexdvi only has to be a symbolic link to texdvi.

3.2 User Interface

The user interface to dvitool has undergone many changes. Our window environment
offers many ways to invoke commands. We finally decided on two: keystrokes and menus.
The reason is that inexperienced users of dvitool expect to use the mouse to perform
commands in a window environment, while advanced users find the menus cumbersome.-
We provide both so that dvitool is both easy to learn for the novice and responsive to
the expert. We provide clues to help the user graduate from novice to expert level. For
example, all of the menu commands also contain the matching keystroke commands as a
hint to the user. We also provide an on-line help facility which is itself a DVI file.

We rejected having "buttons" as our user interface. Buttons can be thought of as
menus which are statically displayed. They are fixed areas inside the window that the user
points to and clicks on with the mouse to invoke a command. The standard placement for
buttons is a row of them either across the top or down one side of the window. The idea
was rejected for two reasons: we wanted to devote as much screen real estate as possible to
displaying the DVI page, and we didn't want to force the user to be continually switching
from the keyboard to the mouse.

As part of dvitool's customization facility, keystroke commands can be redefined by the
user to look like the key bindings of his/her favorite text editor. This feature is particularly
important because users frequently switch from the editor to dvitool and back.

3.3 Future Directions

Dvitool was developed on the SUN workstation and runs under their proprietary window
system [2]. Some care has been taken to isolate the system dependent parts of the code,
but any program which must deal intimately with a non-standardized graphics interface is
inherently not very portable. Dvitool is typical in this respect. We expect to begin work
on a port to the X window system [5] soon.

Over time, the the user interface to dvitool has become more editor-like. Since it is
possible, and indeed desirable, to have both your text editor and dvitool on the screen at
the same time, we've tried to make them as homogeneous as possible. Planned additions to
dvitool include negative magnification (shrinking) and a word search facility. Ligatures
present problems for the word search routines. At the DVI level, ligatures such as the two
characters "ff" are printed as a single character. Certainly we could create a translation
table at compile time to do that mapping, but that solution is necessarily dependent on
external and potentially changeable information.

' 8

...........................

Another problem is how to search for math text. How would the user tell dvitool
to look for z 3 , for example? The obvious solution of having dvitool recognize the T X
syntax for that expression implies that dvitool would have to be able to parse the ThX
language which is a task far beyond its scope.

4. Integrating TEX with Emacs "-

One way to enhance the TEX environment is to customize a display-oriented text editor :

whereby the editing, compiling, and certain preprocessing or postprocessing of a document
may be automated. Since in general a modern display editor is interactive, this approach
turns out to be a remedy for TEX's lack of interaction with the user. Our editor of choice
is GNU Emacs [13] which is the latest implementation in the Emacs family of editors 112].
GNU Emacs supports Emacs Lisp (or ELisp) in both interpreted and compiled forms.
ELisp is very close to a full Lisp implementation: general list and attribute processing are
available as part of some 900 system primitives and functions for various editing purposes.

The enhancements we've made to UX in Ema-s are has-ly two macro packages:
"1w-mode and B11TEX-mode 131. The combined system is about 6,000 lines of ELisp code
which is split into eight different files according to functionalities. Only the most essential
parts are loaded initially; other files are loaded on demand. The first package, TEX-
mode, is an aid to editing, spelling checking, compiling, previewing, and printing ThX and
ITATEX/SIJTEX [9] documents. BLBTEX-mode, on the other hand, is an interface to editing
BIBTEX [9,11] databases. Perhaps more importantly, the two modes are integrated to yield
a very nice bibliography system for both types of documents.

A major focus of our design is a clean and uniform abstraction for both document struc-
ture and desired functionalities. The document structure refers to the types of objects and
their interrelationships in a document that must be made explicit to the user. Function-
alities are the possible operations which may be performed on certain objects. The two
are bridged together by a set of commands which is uniform across the board in terms of
naming and key bindings. Because there are so many commands in the system, the hope
is to make them not only useful but easy to remember as well.

4.1 Document Structure
At the source level, TkX-mode makes the distinction between a document and a file by
acknowledging that a TFX or IITEX document may involve multiple files connected by
\input or \include commands. TEX-mode views a document as a tree of files with
edges being the connecting commands. The root of a document tree is called the master
Jile. Operations involving the entire document must be started from the master file. The
processing sequence is the preorder traversal of the tree. In TEX-mode, each individual file
has a link to the master to assure any global commands initiated in its buffer will always
start from the master. The link to master also makes it possible to separately compile any
component file or a part of it. The technique used in 7EX-mode to do separate compilation
is discussed in Section 4.2.4.

The next level of abstraction is a jile, or when loaded in Emacs, a buffer. Objects of
even smaller granularities include regions and words. A region is a piece of text, including
any white space, bounded by a marker and the current cursor position (i.e. point in GNU
Emacs). A word in TEJ-mode is a piece of text with no white space in it.

6

M _-Y

At the output DVI level, the distinction is less complex. The only abstractions are the
DVI file as a whole and subranges of one extracted out as another file. Normally DVI
files themselves are not visited in Emacs. Therefore in a buffer bound to the ltx source
foo. tex, the implicit operand for operations such as preview and print is foo. dvi instead
of foo. tex. With the abstractions, it is possible to preview or print a DVI file partially
as well as in its entirety.

Furthermore, TEX-mode maintains the notion of document type which may be either
T.X, ITATEX, or SITtX, in our current version. The type information is needed when the
user tries to execute operations involving programs which are type-specific, such as the
formatter (i.e. tex, latex, or slitex) and the document filter (i.e. detex or delatex).
However, such information is implicit to the user except for the first time - once specified
it will be saved as a comment line in the document to be read by later invocations. In other
words, from the user's point of view, operations in TEX-mode are generic. For instance,
an operation is known as format at all times instead of as tex, latex, or slitex under
different situations. 7kX-mode does operator averoadiagimqiktly by cousutbg the type
information.

4.2 Functionalitles

Operations in our enhanced TJ)C environment fall into one the following categories: (1)
delimiter matching, (2) bibliography processing, (3) spelling checking, and (4) tompiling-
debugging-previewing-printing. All four are defined in TX-mode with the exception that
the second also relies on BLBTEX-mode.

4.2.1 Delimiter Matching
A rather complete delimiter matching mechanism is implemented in TkX-mode. First,
automatic delimiter matching applies to a pair of parentheses, brackets, or braces (i.e.

(...), (...], or {...). That is, whenever a self-inserting closing delimiter (i.e.),],

or)) is typed, the cursor moves momentarily to the location of the matching opening
delimiter (i.e. (, [,or (). 7EX-mode gets this for free simply by modifying Emacs' syntax
table entries.

The matching of other delimiters is less straightforward. Matching delimiters such as
quotes (i.e. '... ', * , and "...') and TEX dollar signs ($.. .$) cannot be done
automatically by syntax entry modifications. For example, the symbol '" is the right quote
as well as the apostrophe. Modifying syntax entries in the normal way is inappropriate
because we don't want the cursor to bounce in the case of apostrophes. Matching double
quotes ("...") and TFX dollar signs ($... $) is even harder because the opening and
closing delimiters are identical in those situations.

Semi-automatic Delimiters

T2X-mode introduces the notion of semi-automatic matching. To get semi-automatic
delimiters inserted, one types some special commands and the text between a bound and
the current cursor position will be enclosed by a pair of delimiters. The bound may be
explicit or implicit. For the first case, which is called zone matching in 7EX-mode, the
user consciously sets a zone marker and closes it at the other end by typing the command
that corresponds to the delimiters wanted. For the second case, an implicit bound refersI7

to the white space before or after a word. T7X-mode calls this scheme word matching

. Symbols like I.., 1. .. ", $...$, and $$...$$ as well as groupings for fonts and
boxes such as \it ... \/), \tt ...), \hbox(.. .), and \vbox(...) are all built-in
semi-automatic delimiters in TEX-mode. For instance, typing the command C-c i (tex-
word-it) will automatically enclose the previous word in \it ... V/, with ... being
the word.

Automatic Delimiters

Matching identical opening and closing delimiters is a difficult task. The situation is
further complicated by the TEX dollar sign because a pair of single dollar signs ($... $)
denotes math mode in TWX whereas a pair of double dollar signs ($$... 88) means display,
math mode. A correct mechanism not only has to know which self-inserting $ or $$ is an
opening delimiter and which is a closing one but also must be clever enough so that the
second $ in $$ does not match the one preceding it. Furthermore, a dollar sign may be
escaped (i.e. \$) in TEX which must be treated as an ordinary symbol rather than a math
mode delimiter. TEX-mode's dollar sign matching mechanism is designed to handle all -

cases correctly. A similar but less complex mechanism applies to the matching of double
quotes ("...").

ITEX Delimiters

* One of the most commonly used commands in IkTEX is a pair of \begin and \end which is
normally used to embrace a large piece of text under a certain environment. Environments
can be nested in the obvious way, just as in any block-structured language. With several
levels of environments in place, proper indentations become essential to readability.

7)EX-mode has a facility that opens and closes I'TX environments automatically with
proper indentations inserted. For example, with one command, you can get

\begin{enumerate)
I

\end(enumerate)

where I denotes the current cursor position. Most LXTEX environments are predefined and
there is an operator which prompts you for an environment and its associated arguments
interactively.

Customization

* All delimiter matching schemes mentioned above can be customized. A new pair of de-
limiters may be defined statically by putting the information in Emacs' profile (.emacs)
to have it available for every TEX-mode session. Alternatively, the user can enter the
information interactively to TEX-mode so that a new delimiter pair is bound for only one
particular Emacs session.

4.2.2 Bibliography Processing

BIBTEX is a bibliography preprocessor for lATEX documents. Under the IMTEX paradigm,
one makes citations in the source by referring to entries defined in bibliography databases.

8

A BIBTEX database is a file with the name suffix '.bib' which contains one or more
bibliography entries. To get the final output, the user- first runs latex on the source
to produce some reference information which is passed to bibtex to generate the actual
bibliography. A second run of latex looks up the bibliography and produces cross reference
information based upon which the last latex does the actual substitutions.

TEX-mode makes it possible for BIBTEX to work on plain TFX documents as well. It
bypasses the first latex and invokes bibtex directly. It works with multiple files involved
in a document by recursively examining \input commands in plain ThX files and \in-
cludeonly, \include, and \input commands in lATEX files. Furthermore, it prompts
you for corrections at the places where citation errors are found. In addition, a database
lookup facility is available for making citations. The implications are:
1. The same mechanism not only works for lATEX documents which BIBTEX was originally

designed for but for plain T1X documents as well.
2. To get the final IJLTEX output, the user only has to invoke one or two latex's manually

- epending on non-caaioza symbolic references be~ing present. To get the final T)FX
otoput, only a single run of tax will sufice. This is due to the automatic invocation of
bibtex, the error correcting facility, and the automatic substitution mechanism.

3. Due to the lookup facility, the user does not have to memorize or type in the exact
entry names in order to make citations. The system prompts you one by one the
matching entries found in the specified bibliography database. The selected entry will
be interpolated into the source automatically.

* In our environment there is a powerful IBM 3081 mainframe which we often use for large
jobs. Currently it supports TEX and lATEX but not BIBTEX. However, using our bibliog-

raphy system in Emacs, we are able to get all bibliographical references resolved in our
local machine (VAX/UNIX), send the document as a single file to the 3081 computer over
the network, execute tex or latex there, and get the resulting DVI file back. In fact, a
fair amount of work needs to be done before a .tex file is sent to the remote machine. For

instance, the conversions between special characters used in the two systems and between

stream-based files (UNIX) and record-based files (IBM 3081 takes 80 columns per line)
must all be realized beforehand. It would be impossible to take advantage of the remote
machine's fast speed if our preprocessing facility were not available.

Finally, bibliography database files can be manipulated using BIBTEX -mode. It has all
fourteen BIBTEX bibliography entry types predefined so that to insert a new entry the user

only has to specify its type. A skeleton instance of the specified type will be generated
automatically with the various fields left empty for the user to fill in. A set of supporting
functions such as scroll, field copy, entry duplicate, ..., etc. is provided to facilitate this
content-filling process. Other major features of the mode include a facility to make a
draft bibliography for debugging and previewing purposes and an extended abbreviation
mechanism that allows one to abbreviate chunks of text and to browse abbreviations
defined in any .bib files.

4.2.3 Spelling Checking

The TEX-mode spelling interface allows one to check the spelling for a word, a region,

a buffer, or the entire document. It is specially tailored to TEX and lATEX documents:

9

.7-7- .1.' .- T13 m WY -IF . P- = 7M A . .Z - . E * .. . F . r.F V i . ,

keywords and commands of TEX will first be filtered out by a program called detex and
those of IATF by delatex, before being sent to the system's spelling program. The user
will be able to scroll the list of misspelled words and make corrections, including using a
dictionary lookup facility. To avoid screen redisplay overhead, searching under low speed
connections (< 2400 baud) is implemented for scrolling and replacing any misspelled words
in the buffer. That is, if an instance is not visible in the current window, only the line
containing it is shown in a tiny window at the bottom of the screen.

4.2.4 Compile-Debug-Preview-Print

A number of TFX related programs can be invoked from TEX-mode. These external pro-
grams are executed uniformly in Emacs' inferior shell process. The generic operators are
format, display, view, and print. The first two are overloaded based on the document
type. The display operator is a pipeline of formatting followed by previewing (i.e. texdvi,
latexdvi, or slitexdvi). The view operator is bound to a previewer such as dvitool
described in the Section 3. The other two operators are self-explanatory.

The notion of master file plays an important role here. Both format and display operate
on either the entire document, a buffer, or a region in buffer. A document preamble an-U
similarly a postamble can be associated with the master to contain the document's global
context. To separately compile a component file or its subregion, a mechanism is available
in 7kX-mode that includes in a temporary file the document's preamble and postamble
with the selected text inserted in between. The system will then run format or display
on this temporary file. This technique is primarily for debugging purposes as there is
no provision for linking separately generated DVI files into one big DVI file. However,
for users wanting only a quick look at a relatively small portion of a document in the

debugging pha..- this automatic facility turns out to be very valuable.

A DVI file can be previewed or printed in its entirety. TEX-mode can also invoke the
program dviselect so that arbitrary pages within a DVI file may be extracted and only
these selected pages will be previewed or printed. This is another useful tool for avoiding
unnecessary work in a batch oriented environment like TFX.

Another support for debugging is a mechanism which automatically positions the cur-
sor to the line and column where the error occurs. Also available are little tricks like
commenting out a region by a single command and recovering it by another command.

4.3 Commands

The bridge between objects and their corresponding operations is the set of commands
available to the user. The central issue here is the uniformity in both naming and key
bindings.

By and large, the two modes obey the naming convention that a function name consists
of three parts: prefix (tex- or bibtex-), generic operator, and abstract object. The
corresponding key binding will be the C-c prefix, followed by C- and the first letter of the
middle part, then the first letter of the last part. One example is the T7EX-mode function
tex-format-document with its corresponding key binding being C-c C-f d. BIBTEX-mode
deals with a simpler set of objects such as bibliography entries and their component fields.

10
I0I

[7] L. Johnson. Macintosh Mac Write Manual. Apple Computer, Inc., Cupertino, Califor-
nia, 1983.

(8] Donald E. Knuth. The 7T Book. Addison-Wesley Publishing Co., 1984.

[9] Leslie Lamport. IbTEX: A Document Preparation System. User's Guide and Reference
Manual. Addison-Wesley Publishing Co., 1986.

[10] Joseph F. Ossanna. Nroff/Troff User's Manual. Computer Science Technical Re-

port 54, AT&T Bell Laboratories, Murray Hill, New Jersey, October 1976.

[11] Oren Patashnik. BIBTEXing. Computer Science Department, Stanford University,
Stanford, California, March 1985.

* - (121 Richard AL StalhmsL EF-ACS: the eztenibie, custemisabie uef-documentizg display
:* editor. In Proceedings of A CM SJGPLAN/SIGOA Symposium on Tezt Manipulation,

pages 147-156, Portland, Oregan, June 8-10 1981.

[13] Richard M. Stallman. GNU Emacs Manual. Free Software Foudation, Cambridge,
Massachusetts, second edition, March 1986.

12

